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In mammalian tissues there are four families o f  polyunsaturated fa t ty  acids derived f rom the parent 
fa t ty  acids: palmitoleic and oleic acids, which can be synthesized endogenously, and linoleic and 
linolenic acids', which must be obtained.from the diet and are known as essential fa t ty  acids. These 
four  precursors are desaturated and chain elongated to form the long chain highly unsaturated fa t ty  
acids'. The principal products o f  linoleic acid are arachidonic, with four  double bonds (tetraene), and 
dihomogamma linolenic acids; those o f  linolenic acid are eicosapentaenoic and docosahexaenoic 
acids. These polyunsaturated acids derived J?om essential fa t ty  acids when incorporated into mem- 
brane phospholipids can alter membrane fluidity, which determines the permeability o f  membranes 
and the behavior o f  membrane-bound enzymes and receptors. The dihomogammalinolenic, arachi- 
donic, and eicosapentaenoic acids are also the precursors o f  eicosanoids, which influence many 
cellular processes. When the dietao' amounts o f  linoleic and linolenic acids are inadequate, palmito- 
leate and oleate are desaturated and chain elongated to give rise to eicosatrienoic acids (triene). An 
elevated tissue triene/tetraene ratio is, thereJbre, used as a marker for  essential fa t ty  acid deficiency. 
The essential fa t ty  acid deficiency symptoms include reduced growth rate, scaly dermatitis, impaired 
reproduction, and susceptibility to infection. The intake o f  I to 2% o f  the daily calories as linoleate 
and 0.2 to 0.5% as linolenate is widely acknowledged as the approximate amounts to meet  the needs 
o f  essentiulJatty acids in humans 
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Introduction 

The first indication that fat may be essential for 
healthy growing animals was presented by Aron in 
1918. t He proposed that butter,  in addition to its con- 
tribution to calories, had a specific nutritive value 
possibly related to its content  of  certain lipid compo-  
nent(s). Evans  and Burr 2 then showed that a defi- 
ciency of fat severely affected both growth and repro- 
duction of exper imenta l  animals even though the 
then-known fat soluble vitamins A, D, and E were 
added in the diet. The active principle in fat was con- 
sidered to be a new vitamin and was tentatively coined 
vitamin F. The nutritional importance  of specific lipid 
molecule(s) in fat was first revealed through the pio- 
neering work  of Burr  and Burr  3 in 1929. They fed 
weanling rats a fat-free diet and observed retarded 
growth,  scaly skin, tail necrosis and even death. This 
disorder was reversed  by feeding linoleic acid. A sub- 
sequent  paper  by the same authors 4 described im- 
paired fertility, increased water  consumption,  and di- 
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minished urine product ion as further symptoms of 
deficiency in rats maintained on fat-free diet. They 
found that either linoleic acid or linolenic acid could 
provide the missing factor,  and when either was in- 
cluded in the diet normal growth resumed. They 
coined the term "essent ia l  fatty acids"  (EFA) for 
these components  that were not synthesized in the 
animal organism and had to be supplemented in the 
diet for normal physiologic function. 

In 1938 it was repor ted 5 that arachidonic acid was 
roughly about  three times as effective as linoleic acid 
in relieving symptoms  of  deficiency and this fatty acid 
was added to the list of  EFA.  Linoleic acid was found 
to undergo t ransformat ion in the animal organism to 
give arachidonic acid 6 and was considered to be the 
principal unsaturated fat ty acid required by animals. 
Burr ' s  autobiographical  account  of  the discovery of 
the E F A  was published r ecen t ly ]  

Other  investigators were able to produce E F A  de- 
ficiency in a wide range of species f rom insects to birds 
and mammals  feeding a diet lacking in these fatty 
acids, but it was difficult to produce deficiency symp- 
toms in humans.  The first exper iment  in a human was 
done by biochemist  W.R. Brown, who himself  went 
for 6 months  on a diet ex t remely  low in fat. ~ He was 
clinically well throughout  the entire period, not having 
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even a common cold. He did not develop scaly skin 
or other visible abnormalities seen in several species 
of animals maintained on EFA deficient diets and, 
therefore, the essentiality of these fatty acids, at least 
in adult humans, was in question. But any doubt that 
EFA were required in the human was dispelled when 
Hansen et al. 9 described severe skin symptoms in in- 
fants who were fed a milk-based formula diet in which 
EFA were virtually absent. Addition of EFA cor- 
rected the skin symptoms. This work proved conclu- 
sively that linoleic acid was required for proper growth 
and health of infantsJ ° With the advent of parenteral 
nutrition based on a system of continuous infusion of 
fat-free solution containing glucose, EFA deficiency 
also occurred in human adults. This was characterized 
by a skin rash and changes in plasma levels of polyun- 
saturated fatty acids (PUFA). These changes were 
corrected by infusing an intravenous emulsion con- 
taining linoleate. 11,12 

Biosynthesis of polyunsaturated fatty acids 
Mammalian tissues contain four families of PUFA: (.0 9, 
(.07, (.06, and (.0 3 . The precursors of the first two are the 
monounsaturated fatty acids that can be synthesized 
endogenously from the saturated fatty acids. Monoun- 
saturation in the A 9 position is the rule and the animal 
enzyme systems are incapable of inserting double 
bond between carbon atom 1 and 6 starting from the 
methyl ((.0) carbon of the saturated fatty acid. 13 Thus 
there are only two saturated fatty acids available for 
desaturation: paimitic and stearic acids. An enzyme 
A 9 desaturase in the liver microsomes catalyzes the 
conversion of palmitate to palmitoleate (C~6:1,to7) and 
of stearate to oleate (C~8:~,009). Monounsaturated fatty 
acids with double bonds occurring before the A 9 posi- 
tion are not synthesized to significant extent by ani- 
mals because the required desaturase is absent and the 
trace amounts found in animal tissue lipids probably 
arise from the diet. The other two precursors are nec- 
essarily derived from dietary linoleic (C18:2,to6) and lin- 
olenic (C18:3,to3) acids. These four precursors are alter- 
nately desaturated (in which two hydrogen atoms are 
removed to create a new double bond) and elongated 
by the addition of two carbon atoms. 14 The desatura- 
tions are catalyzed by A 6, A 5, and probably A 4 desatu- 
rases ~5 to form the principal PUFA found in animal 
tissues. 

It is believed that the same enzymes catalyze the 
equivalent steps in to7, to9, (.°6, and (.03 fatty acids path- 
ways 16 and there is competition among substrates for 
the same enzyme system (Figure 1). The critical en- 
zyme in these reactions is A 6 desaturase for which the 
greatest affinity appears to be conferred by the great- 
est number of double bonds in C18 substrate (provided 
the substrate concentrations are equal). Thus linolenic 
acid with three double bonds is desaturated at the 
highest rate followed by linoleic acid and oleic acidJ 7 
In the presence of either of the two dietary fatty acids 
little desaturation of oleate occurs. Linolenate effec- 
tively inhibits the desaturation of linoleate (at equal 
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concentrations). In the absence of the members of the 
to6 families, however, oleate is desaturated and the 
members of the to9 family, particularly C20:3,to 9 o r  the 
"Mead acid"18 appear in the tissues. This explains the 
well-documented finding that in EFA deficiency a tri- 
enoic acid (largely Mead acid) increases dramatically 
in the tissues and with feeding a diet containing EFA, 
it decreases. 19 

In the desaturation process additional double bonds 
are inserted between the pre-existing double bonds 
and the carboxyl group and the chain elongation al- 
ways proceeds by the addition of two carbon units to 
the carboxyl terminus of the fatty acyl chain. 2° There- 
fore, the position of the double bond counting from 
the methyl ((.0) end of the precursor fatty acid remains 
unaltered through all transformations. All transforma- 
tion products of oleic acid possess the (.09 configuration 
of oleate itself and are recognized as members of the 
(.0 9 family. Nervonic acid (C2,:l,to9), a component of 
nerve tissue lipid that is derived by chain elongation 
of oleate and vaccenic acid (Cls:l,to7) that occurs in 
small amounts in animal lipids, is formed by chain 
elongation of pamitoleic acid. 21 Similarly linoleate and 
linolenate give rise respectively to (.06 and (.0 3 families 
of PUFA. 22 No interconversion between these families 
c a n  o c c u r .  

In addition to the desaturases there is competition 
of the substrates for the chain elongation enzymes and 
for the acetyl transferases involved in the formation 
of phospholipids (which require PUFA). Lower mem- 
bers of a family may also be able to compete with 
some of its products for enzyme sites and limit the 
extension of its family. Long-chain highly unsaturated 
fatty acids can be shortened by two carbons, a phe- 
nomenon called retroconversion. 23 Because of the 
competition, retroconversion, etc., each family has 
characteristic end products that accumulate in tissue 
lipids while the intermediates are usually found in 
much smaller, often trace amounts. Thus for oleate, 
the major PUFA is C20:3to9, for palmitoleate C20:3 ' (.07, 
for linoleate arachidonic acid and some dihomogamma 
linolenic acid (DHGL), and for linolenate C20:5 plus 
C22:6, both (.0 3. The carbon 22 hexaenoic acid is the 
most unsaturated fatty acid commonly found in the 
lipids of higher animals. 

The activity of A6 desaturase is the major control- 
ling factor in the biosynthesis of PUFA and hence can 
affect the overall production of the principal PUFA. 
Available data from experimental animals suggest that 
the enzyme is sensitive to several factors. 13,24 Those 
which tend to increase the enzyme activity include 
high-protein diet, insulin, and EFA deficiency, while 
fasting, glucagon, glucocorticoids, and diabetes are 
known to decrease its activityfl 5-27 Animal experi- 
ments suggest that m 6 desaturase activity decreases 
with age ,28 younger animals having higher activity per- 
haps because of the requirement of long-chain PUFA 
due to building of new tissues for growth. 

It has been suggested that the enzyme m 6 desaturase 
is regulated by zinc. Some of the effects of zinc defi- 
ciency and essential fatty acid deficiency (particularly 
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Figure 1 Biosynthesis of polyunsaturated fatty acids. 

growth and dermal) are similar. 29 This is also sup- 
ported by observations that most biologic effects of 
zinc deficiency are corrected by gamma-linolenic acid 
(which bypasses A 6 desaturase) but not by linoleic 
acid. 3° Reduction in the activity of this enzyme can 
limit the availability of DHGL and arachidonic acid 
required for normal physiologic functions. We acquire 
a good deal of arachidonic acid from meat, dairy prod- 
ucts, etc., but little or no DHGL is found in our diet. 
There are also species differences in the rate of A 6 
desaturase activity. Rat is perhaps the most efficient 
in the conversion of linoleic acid to DHGL. On the 
other hand, strict carnivores, such as the lion and the 
cat, lack A 6 desaturase. 31'32 These animals, therefore, 
require a source of preformed DHGL and perhaps ara- 
chidonic acid. In practice these species exhibit a spe- 
cific requirement for PUFA of animal origin. 

Functions 

Fatty acids in general are utilized in the body as the 
principal sources of energy and hence a proportion of 
EFA (linoleic and linolenic) also contributes to pro- 
vide energy. The PUFA are oxidized more rapidly 
than saturated or monounsaturated fatty acids. 33 After 
ingestion, linoleic and linolenic acids have been shown 
to be distributed between adipose triglyeerides, other 
tissue stores, and tissue structural lipids. By contrast 
the long-chain PUFA derived from EFA, eg, DHGL, 
arachidonic acid, eicosapentaenoic (EPA) and docosa- 
hexaenoic (DHA) acids are spared from oxidation. 34 
These acids, if present in the diet as preformed, are 
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incorporated into structural lipids about 20 times more 
efficiently than they are incorporated after synthe- 
sis from dietary linoleic and linolenic acids. ~s,36 The 
PUFA are incorporated into phospholipids on the 
glycerol moiety almost exclusively in the 2-acyl posi- 
tion. Arachidonic acid is by far the most important 
long-chain PUFA in tissue lipids. DHGL is present in 
concentrations much lower than arachidonic acid. 

Recently it has been reported 37 that normal young 
cartilages of several species studied (young chicken, 
fetal calf, newborn pig, rabbit, and human) have un- 
usually high levels of Mead acid and low levels of 
PUFA of (o 6 family, a characteristic of EFA defi- 
ciency. But the levels of % fatty acids in their blood 
and other tissues are normal. Mead acid is found to be 
particularly abundant in phosphatidyl ethanolamine, 
phosphatidyl inositol, and free fatty acid fractions 
from the young cartilage, to 9 fatty acid probably plays 
some functional role such as inhibition of response 
known to be involved in cartilage destruction. The 
high levels of Mead acid are found to progressively 
decrease with increasing age and are accompanied by 
a steady increase in ~06 fatty acids. This trend is partic- 
ularly pronounced in oesteoarthritic cartilage. 38 

The biologic functions of EFA include stimulation 
of growth, maintenance of skin and hair growth, regu- 
lation of cholesterol metabolism, lipotropic activity, 
maintenance of reproductive performance, and other 
physiologic and pharmacologic effects. On a molecu- 
lar level these fatty acids help maintain membrane in- 
tegrity and optimum level of unsaturation in tissue 
lipid and are components of specific lipids. 39'4° 

Membrane integrity 

The first function to be widely attributed to EFA was 
as an essential component of the phospholipids that 
serve as structural units of biomembranes. PUFA are 
the major components of structural lipids of mem- 
branes of cells, mitochondria, and nuclei and they play 
a major and vital role in the properties of most mem- 
branes. The physical properties (such as the fluidity) 
of phospholipids are in large part determined by the 
chain length and the degree of unsaturation of their 
component fatty acids. The physical properties, in 
turn, affect the phospholipid's ability to perform struc- 
tural function such as the maintenance of normal ac- 
tivities of membrane bound enzymes such as adenyl 
cyclase,41 5-nucleotidase, and Na +/K + ATPase.42 The 
dietary fatty acid may modify the insertion, aggrega- 
tion, and diffusional movements of membrane compo- 
nents, the activity and affinity of receptors, membrane 
permeability, 43 and transport properties. 44 Several cel- 
lular functions such as secretion, chemotaxis, signal 
transmission, and susceptibility to microorganism in- 
vasion depend on membrane fluidity. 45'46 

The regulatory function of PUFA is also suggested 
in part by the heterogeneity and selectivity in their 
tissue membrane distribution. The fatty acid profiles 
of complex lipids vary with the type of lipid, position 
within a phospholipid, body organ region, and cell 



type. 42 The highly unsaturated fatty acids are particu- 
larly concentrated when there is a requirement for 
rapid movement at a cellular level such as may be 
required in transport mechanism in the brain, its syn- 
aptic junction, and the retina where only the long- 
chain derivatives of EFA a r e  f o u n d .  47'48 

Skin 

The most abundant PUFA in human skin are linoleic 
acid and arachidonic acid. 49'5~ There is substantial evi- 
dence that at least one essential function of linoleic 
acid is in the skin to maintain the integrity of epidermal 
water barrier. 5~ The physical structure of the epider- 
mal water barrier was ascribed to sheets of stacked 
lipid bilayers that fill the intercellular spaces of the 
uppermost layer of the epidermis) 2 These lipid bi- 
layers contain large amounts of sphingolipids of which 
the linoleate-rich species have been characterized as 
acylceramide, acylglucosyl ceramide, and a unique 
acyi acid. For linoleate of the sphingolipid to attain 
barrier function it must first be metabolized by lipoxy- 
genase type reaction. 53 In EFA deficiency the linoleic 
acid in ceramides is replaced by oleic acid and results 
in severe water loss from the skin. 54 

Immunity and infection 

Increased susceptibility to infection is a well- 
documented consequence of EFA deficiency in ani- 
mals 55 and infection is a common clinical problem for 
patients undergoing fat-free hyperalimentation, s6 Cer- 
tain PUFA are known to be effective in killing those 
viruses that have a lipid component in the enve- 
lope. 5v'58 But the mechanism by which EFA deficiency 
causes infection is not clear. 

Mice on a diet deficient in EFA showed significant 
reduction in immune responses. 59 EFA deficiency also 
diminished responses to T cell-dependent and T cell- 
independent antigens in mice. 6° Full restoration of 
these responses occurred upon switching to a control 
diet. However, others 61-63 have reported that mice fed 
an EFA deficiency diet showed potentiation of cell- 
mediated immunity indicated by accelerated rejection 
of skin allografts. Several investigators found that the 
effect of PUFA depended on the concentration, ie, 
low concentration of PUFA were stimulatory and high 
concentration inhibitory. 

There are two possible ways by which EFA may 
affect immune function: 1) via membrane structural 
changes, and/or 2) via chemical mediators such as ei- 
cosanoids. PUFA may cause change in the membrane 
fatty acid composition of lymphoid cells. This may 
cause a change in membrane fluidity leading to alter- 
ation in the activity of enzymes, receptor expression, 
and intercellular signaling, which in turn can influence 
lymphocyte responsiveness. 64 Evidence is accumulat- 
ing that eicosanoids, especially prostaglandins E type, 
are operating at several levels of immune response as 
intercellular mediators 65'66 inhibiting the action of sup- 
pressor T cells and leading to increased antibody pro- 
duction, at least in vitro. However, the effect of PUFA 
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on the immune response is controversial and the 
mechanism through which PUFA may influence im- 
mune system is still not clearly understood. 

Dietary arachidonic acid is preferentially incorpo- 
rated into the phospholipids of activated lympho- 
cytes 67 and arachidonic acid constitutes over 20% of 
total fatty acid content in phospholipids of macro- 
phages. 61'68 Immune competent cells from animals fed 
EFA-deficient diet or a diet with increased ¢o 3 fatty 
acids relative to arachidonic acid synthesize fewer 
prostaglandins. 69'7° In EFA deficiency there is a lack 
of eicosanoid precursors. Feeding high ¢o 3 fatty acids 
results in substitution of arachidonic acid by EPA. The 
PGE~ formed from EPA has less of an inflammatory 
effect than PGE2 derived from arachidonic acid. Like- 
wise the leukotriene derived from EPA (eg, Bs) is ap- 
proximately 30 times less potent than that formed from 
arachidonic acid (eg, B 4) in aggregation of neutrophils 
and release of lysosomal enzymes. 7~ Diet rich in % 
fatty acids may produce change in the production 
of eicosanoids in a way more favorable with regard 
to tendency toward severity of inflammatory reac- 
tions. 72.73 

Eicosanoids 

DHGL, arachidonic acid, and EPA are the precursors 
of eicosanoids 74 that are formed by the action of mem- 
brane bound cyclooxygenase or specific lipoxygenase 
enzyme systems. 48'75 The eicosan0id family includes 
prostaglandins, thromboxanes, prostacyclins leuko- 
trienes, lipoxins, and other hydroxy fatty acids. 76-79 
These compounds participate in many physiologic and 
pathologic processes and are potent regulators of cell 
function. They act locally in the tissues in which they 
are formed and are rapidly converted to their inactive 
forms. 80 

Specific role for  w 3 fatty acids 

Of the two parent PUFA, linoleic and linolenic acids, 
linoleic acid has long been known to be essential for 
animals and humans. It is generally considered that 
linoleic acid satisfies most of the EFA requirements of 
mammals and any EFA activity expressed by linolenic 
acid is also expressed by linoleic acid, which is more 
potent. While both linoleic and linolenic acids support 
growth, development, and reproduction, dermal integ- 
rity requires only linoleic acid. A specific requirement 
for to 3 fatty acids has only been shown in fish. 81 Be- 
cause of the inability of linolenic acid to normalize all 
physiologic functions during EFA deficiency, several 
investigators have designated to 3 fatty acid as non- 
essential or partially essential. However, during the 
last few years studies have been published to suggest 
that o~ 3 fatty acids may be essential in addition to the 
requirement for ~06 fatty acids for which they can par- 
tially substitute. 82 

o~ 3 fatty acids are important components of struc- 
tural lipids in many tissues, notably the brain and the 
retina 83 and the levels in these tissues are depleted 
with extreme difficulty. Biologic structures involved in 
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Figure 2 Formation of eicosanoids, 

fast movement or signal transmission appear to have 
a requirement for highly unsaturated fatty acids. For 
example, the synaptic junctions have more unsatu- 
rated DHA. In several species studied, including hu- 
mans, retinal rod outer segment disk membrane in 
which rhodopsin rests, the major phopholipid contains 
40%-60% of the total fatty acid as DHA. 84'85 In the 
cerebral cortex of humans, monkeys, and rats DHA 
accounts for approximately one-third of the fatty acid 
content of ethanolamine and serine phosphoglycer- 
ides. s6 Changes in physiologic functions have been ob- 
served in monkeys selectively deprived of ~o 3 fatty 
acids for prolonged periods and the altered changes 
have been corrected by the administration of linolenic 
acid. 87 Rats exposed to % fatty acid-deficient diet 
exhibited depressed learning ability 88 and abnormal- 
ities in the electroretinogram, 89 which measures the 
retinal-evoked response to flashes of light. 

Epidemiologic studies have provided data associat- 
ing seafood consumption with reduced risk of coro- 
nary heart disease and inflammatory disease. 9°92 Sea- 
food is rich in two ~03 fatty acids, EPA and DHA, and 
low in arachidonic acid. Clinical studies have shown 
that the exchange of marine fish oil for vegetable oil 
in an otherwise typical Western diet leads to a more 
favorable pattern of serum lipids. It causes a reduction 
in very low density lipoprotein (VLDL) and low den- 
sity lipoprotein (LDL) in both normal and hyperlipid- 
emic patients. 93 Fish-oil consumption also reduces 
platelet aggregability and prolongs bleeding time. 94'95 
Experimental and epidemiologic studies also suggest 
a negative relationship between certain types of can- 
cer and dietary % fatty acids. A high intake of these 
fatty acids in the diet is associated with a decrease 
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in the incidence, growth, and spread of a variety of 
experimental tumors. 96 Recently is has been reported 97 
that the formation of interleukin-I and tumor necrosis 
factor (TNF), the principal polypeptide mediators of 
inflammation, can be suppressed by dietary supple- 
mentation with long-chain % fatty acids. 

The essentiality of linolenic acid in humans is con- 
troversial but because of the high concentration of 
DHA derived from it in the brain and retina it appears 
that c03 fatty acids may be required in the diet. How- 
ever, more studies are needed in clarifying the role of 
linolenic acid in human nutrition. 

Deficiency 
The detailed studies on the symptoms of EFA defi- 
ciency have been done in young rats. 98 They include 
reduced growth rate, scaly dermatitis, impaired repro- 
duction, kidney abnormalities, abnormal swelling and 
function of mitochondria, decreased capillary resis- 
tance and increased fragility of erythrocytes, in- 
creased water consumption, and increase in triene/ 
tetraene ratio above 0.4. Rats deficient in EFA have 
lower brain arachidonic acid and DHA and increase 
in Mead acid and they are more sensitive to all volatile 
anesthetics. 99 Most normal diets contain enough EFA 
or their metabolic products to meet daily requirements 
and the deficiency is rare in humans. But when it ex- 
ists some of the symptoms characteristic in animals, 
such as abnormal skin condition, increased suscepti- 
bility to infection, and an increase in triene:tetraene 
ratio have also been observed in EFA-deficient 
humans. 

The first study of the EFA deficiency in human 
adults maintained on a diet extremely low in fat for 6 
months did not produce dramatic symptoms. 8 It was 
suggested that because adults contained little more 
than two pounds of linoleic acid in body stores, more 
than 6 months were necessary for the depletion of 
EFA stores and to produce deficiency symptoms. The 
first definitive evidence for the dietary requirement of 
EFA in humans was provided by the study of Hansen 
et al.l°° They fed 428 healthy infants one of the five 
proprietary milk mixtures adequate in protein, miner- 
als, and vitamins but varying in linoleic acid content 
from less than 0.1% to 7.3% of total calories. A high 
proportion of babies who were fed milk mixtures low 
in linoleic acid (< 1% of total calories) for 3 months 
developed dry, thick, desquamated skin and retarded 
growth. The clinical manifestations disappeared after 
the administration of diets that provided 1% or more 
of the calories as linoleic acid. On this basis it was 
concluded that the minimum requirement of EFA in 
humans was 1% of total calories or more to cure 
symptoms. 

Parenteral nutrition 

The most common cause of deficiency in all age 
groups is the long-term intake of fat-free parenteral 
nutrition (PN). The PN was technologically developed 



in 1968.1°1 It has helped many patients (who were un- 
able to tolerate oral food for extended periods and, 
therefore, were difficult to treat) to survive. PN solu- 
tions were fat free until 1979 because of the toxic reac- 
tions to the then available corn oil and castor oil emul- 
sions and the patients receiving these PN solutions 
became EFA deficient. 

PN is commonly administered as a continuous infu- 
sion of glucose-containing solution that results in a 
constant elevation of serum insulin. This depresses 
the release of fats including EFA from adipose fat 
stores. 1°2,1°3 Normally adipose tissue fat contains ap- 
proximately 10% EFA. 1°4 A 70 Kg man has about 12 
Kg adipose tissue of which a little more than 1000 g is 
EFA. Assuming the adult daily requirement for EFA 
as 7.5 g, his body stores of EFA can last more than 6 
months and he is not likely to show deficiency symp- 
toms even if he remains on fat-free diet. However, if 
he is on PN without fat, the continuous glucose infu- 
sion is expected to cause inhibition of the release of 
EFA from adipose stores. Thus continuous fat-free 
PN seems to provide optimal conditions for develop- 
ment of EFA deficiency. It supplies no fat and inhibits 
the mobilization of body's fat stores. Plasma free fatty 
acids originate from endogenously synthesized lipids 
derived from glucose and these do not include EFA. 
On the other hand, PN containing only amino acids 
and completely free of glucose do not produce bio- 
chemical evidence of EFA deficiency.l°4 

Studies in infants who were maintained on long- 
term fat-free PN demonstrated the development of 
clinical signs together with biochemical evidence of 
EFA deficiency.l°51°7 The administration of diets con- 
taining linoleic acid reversed both clinical and bio- 
chemical abnormalities. Some premature infants de- 
veloped very rapid biochemical changes in the plasma 
as early as second and third days of life. 1°7,1°8 Border- 
line stores of EFA characteristic of the premature and 
the high caloric expenditure might have been responsi- 
ble for the early onsets of EFA deficiency. 

In the neonate maintained on fat-free "glucose- 
containing" PN, biochemical and clinical signs of 
EFA may become apparent in 5-10 days after the start 
of PN. In adults receiving similar PN the biochemical 
evidence of deficiency is generally seen 2 weeks 11 after 
the initiation of PN and by the end of 7 weeks all 
patients exhibit clinical signs of deficiency. Manifesta- 
tions of EFA deficiency in these patients include alo- 
pecia, brittle nails, desquamating dermatitis, increased 
capillary fragility, indolent wound healing, increased 
platelet aggregation due to reduced prostaglandin syn- 
thesis, increased susceptibility to infection, fatty liver 
infiltration, and growth retardation in infants and chil- 
dren. Linoleic acid is the primary and perhaps the only 
essential fatty acid, at least for human adults. 1°9 To 
correct or prevent the deficiency when oral intake is 
denied, linoleic acid must be provided intravenously. 
The minimum linoleate dose to prevent deficiency 
state is about 5% of the total calories for adults and 
2% for pediatric patients. Deficiency is accentuated 
by the increased metabolic demands associated with 
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growth and the hypermetabolism following injury, 
sepsis, or stress. These patients should receive 500 
mL of 10% lipid emulsion 11° 2-3 times per week. 

Other conditions 

Because of the very sensitive procedure for the mea- 
surement of triene:tetraene ratio it has been possible 
to demonstrate EFA deficiency in elderly patients with 
peripheral vascular disease, 111 due to malabosorption 
after major intestinal resection, 112113 and in patients 
with serious accidents and burns.114 In all these condi- 
tions oral or intravenous feeding of linoleic acid has 
been found to correct the biochemical and skin abnor- 
malities. Patients with acquired immune deficiency 
syndrome (AIDS) have been found to have low total 
plasma PUFA 115 and the 20- and 22-carbon EFA of the 
to 3 series are selectively and significantly reduced. The 
reduction in ~o 3 fatty acids may be responsible for the 
elevated circulating level of TNF in these patients 116 
and may have relevance to the pathogenesis of 
cachexia.117 Normalization of the levels of these fatty 
acids in AIDS patients may be a worthwhile therapeu- 
tic aim. 

Linolenic acid deficiency 

In 1982 the first case involving specific deficiency 
symptoms attributed to linolenic acid deficiency was 
described by Holman et ai. 118 A 6-year-old girl who 
sustained an accidental gunshot wound to the abdo- 
men, underwent repeated resections of the small intes- 
tine and recovered sufficiently. She was maintainted 
on home PN that included safflower oil emulsion rich 
in linoleic acid. After 5 months, she experienced epi- 
sodes of numbness, paresthesia, weakness, inability to 
walk, leg pain, and blurred vision. Analysis of serum 
revealed very low levels of linolenic acid and other % 
acids derived from it. PN was then changed to include 
soybean oil emulsion, which contains linolenic acid. 
All the symptoms of deficiency disappeared over the 
next 3 months and plasma level of % fatty acids re- 
turned to normal levels. This neuropathy was corre- 
lated with linolenic acid deficiency and not with lin- 
oleic acid. In 1984 Neuringer et al. 119 described 
linolenic acid deficiency in Rhesus monkeys. They 
found decreased amounts of linolenic acid and PUFA 
derived from it in plasma phospholipids of the off- 
springs who also showed a loss in visual activity. 
Bjerve et a1.~2°-122 reported linolenic acid deficiency in 
nine patients who were fed by gastric tube for 2.5-12 
years and had received 0.02%-0.09% of calories as % 
acid. Total ~03 fatty acids in their plasma and erythro- 
cytes were decreased. They had slight but definite 
scaly dermatitis that disappeared with supplementa- 
tion of linolenic acid. 

Requirements 
The exact requirement of EFA in humans is not clearly 
defined. Arachidonic acid with four double bonds (tet- 
raene) is the major metabolite of linoleic acid and eico- 
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satrienoic acid (triene) is the major product  derived 
from non-essential fatty acids. As stated earlier, di- 
etary intake of  adequate amounts of EFA decreases the 
formation of  triene as a consequence of competitive 
inhibition among families of  PUFA for desaturases 
and possibly acyl transferases.  If EFA are not avail- 
able, the biosynthesis of  PUFA with three double 
bonds derived from oleic and palmitoleic acids con- 
tinue. It has been shown in all species tested including 
humans that t r iene: tetraene ratio in plasma is below 
0.4 when dietary EFA are adequate and is increased 
above 0.4 in relation to the degree of deficiency. 19 The 
optimum dietary linoleate required to give a ratio of 
less than 0.4 and to prevent  symptoms of EFA defi- 
ciency is 1%-2% of  total calories. It has been sug- 
gested that those functions dependent  on eicosanoid 
formation may show an optimum response with di- 
etary linoleate at higher levels perhaps as high as 
6%-10% of  total calories. An absolute amount re- 
quired is not yet known, but because no ill effects 
have been reported up to this level (6%-10%) the ten- 
dency is to consider it as optimal. The Food and Nutri- 
tion Board of  the National Academy of Sciences rec- 
ommends that at least 3% of daily calories be provided 
as linoleate but it is recognized that larger amounts 
may be desirable to control blood lipids in certain indi- 
viduals. The average daily intake of  linoleic acid by 
adults in most industrialized western countries is 
about 10 grams. 

Pregnancy 

There are no studies reported on the EFA require- 
ments during pregnancy and lactation. The approxi- 
mate accumulation of EFA during pregnancy is esti- 
mated to be about 620 g, which includes the demand 
for uterine, placental,  mammary gland, and fetal 
growth and the increased maternal blood volume. 123 
Most of  the fat in fetal organs such as liver and brain 
is structural and contains a high proportion of phos- 
pfiolipids requiring long-chain PUFA derived from 
EFA.  To meet these needs, 4.5% of the expected calo- 
ric intake in the form of EFA is recommended during 
pregnancy. 124-126 

Lactation 
Approximately 4 % - 5 %  of  total energy in human milk 
is present as linoleic and linolenic acids and 1% as 
long-chain P UF A derived from these acids, amounting 
to about 6% of  total energy as EFA and its metabo- 
lites. 127'~28 The fat stored during normal pregnancy is 
utilized during lactation at the rate of about 300 calo- 
ries per day. Between 3-5 g of  EFA are secreted in 
milk per day. The efficiency of  conversion of dietary 
EFA into milk fatty acid is not known, but an addi- 
tional I % - 2 %  of  energy in the form of EFA is recom- 
mended during the first 3 months of  lactation and an 
additional 2 % - 4 %  of the energy above the basic 
requirements is recommended thereafter,  j23 
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Infancy 
Normal growth of  infants depends on an adequate 
supply of  EFA.  ~°° Human gray matter and retinal 
membranes contain significant amounts of long-chain 
PUFA,  especially DHA. Rapid accretion of these fatty 
acids occurs in the central nervous system during the 
last tr imester of  gestation and first months of 1ife.~29'13° 
Therefore  preterm infants, due to their low fat stores, 
may be susceptible to EFA deficiency. Lower  accu- 
mulation of DHA in neural and retinal membranes 
during development  is associated with behavioral 
abnormalities TM and impaired visual development.  ~19 
Long-chain P U F A  may not be synthesized from par- 
ent EFA at optimal rates during the first few weeks 
after birth and especially in low birth-weight infants. 
At present there is insufficient information to deter- 
mine whether  term or preterm infants have sufficient 
enzymatic activity to synthesize their own long-chain 
PUFA from EFA to meet their requirement for brain 
growth and development.  Because of the importance 
of long-chain PUFA for development,  it is essential to 
provide brain cells with adequate dietary intake of 
EFA and their long-chain derivatives. Human milk 
provides both EFA and their long-chain derivatives. 
The ideal recommendat ion for milk substitutes would 
be to match the EFA of human milk from well- 
nourished mothers with respect to linoleic and linole- 
nic acid and the long-chain PUFA derived from 
them. ~32 Formulas containing fat of  vegetable origin 
with high linoleic acid content provide adequate EFA 
of the co 6 family. Human milk also contains linolenic 
acid and DHA that are often absent from infant formu- 
las. A diet deficient in linolenic acid but adequate in 
linoleic acid results in reduced amounts of DHA and 
increased amounts of  PUFA derived from linoleic acid 
in the brain cells of  rats. ]33 The long-chain derivatives 
of EFA are highly susceptible to oxidative damage and 
incorporating them into synthetic formulas is a matter 
of  serious concern.  It is not known precisely what are 
the optimum requirements for EFA of ~06 and o~ 3 fami- 
lies for infants. However ,  using the fatty acid compo- 
sition of  red blood cell phospholipids as an index of 
cerebral membrane composit ion Carlson et al. ~34 found 
that infants fed human milk have significantly better 
DHA status than formula-fed infants. Recent work of 
Innis et al ]35 suggests that infants fed formula con- 
taining at least 2 % of the total fatty acid as linolenic 
acid (0.95% of  calories) and a ratio of linoleic:linolenic 
acid similar to that of  human milk may permit incorpo- 
ration of to 3 fatty acids in low birth-weight infants 
equivalent to those fed mother ' s  milk. 

Aging 

Most individuals have enzymes required to derive 
long-chain P U F A  from linoleic and linolenic acids. 
Some authors have suggested that the activity of A 6 
desaturase may decrease with aging, 28,t36 which may 
contribute to the deficiency of D H G L  and arachidonic 
acid. However ,  the data of Siguel and Schaefer j37 sug- 
gest that this may not be true for most elderly people, 



because the levels of plasma PUFA derived from EFA 
of elderly are similar to those of young individuals. In 
some people the formation of PUFA may not meet 
body needs (perhaps due to the metabolic block) and 
such individuals may have increased requirements for 
EFA derivatives in the diet. The usual diets contain 
adequate amounts of arachidonic acid, therefore the 
main problem in those with decreased desaturase ac- 
tivity is likely to be the deficiency of DHGL, the pre- 
cursor of prostaglandins of the " 1"  series. 138 Evening 
primrose oil contains gamma linolenic acid that by- 
passes the step requiring A6 desaturase.139 The amount 
of DHA, a product derived from linolenic acid, is 
found to decrease with aging in the retina of rats 14° 
and appears to be the result of decreased A 4 desaturase 
activity with aging. Therefore some have suggested 
that there may be increased requirements of EFA and 
some long-chain PUFA derived from EFA in the el- 
derly; but at present there is not sufficient clinical evi- 
dence to warrant this conclusion. 

w 3 fatty acids 

There is still controversy regarding the requirement of 
linolenic acid. A recent case of peripheral neuropathy 
and blurred vision in a child receiving parenteral nutri- 
tion has been attributed to 003 fatty acid deficiency 118 
and the deficiency has also been described in 
adults.12°'lzl There is now experimental evidence for a 
dietary requirement of co 3 fatty acids in primates and 
the visual defect associated with % fatty acid deple- 
tion supports its essentiality in humans. A role of these 
fatty acids in the development of neural tissue and 
visual function is evident. 141 In healthy humans plasma 
levels of o~ 6 fatty acids are about 10 times greater than 
% fatty acids. 142 Based on these data and some obser- 
vations in elderly patients it has been suggested that 
linolenic acid requirements should be 0.2%-0.3% of 
total energy for adults 12° and 0.56% for children.liB 

Factors affecting requirement 

Several substances are known to affect the require- 
ments due to their interaction with EFA, which can 
affect their utilization or metabolism. 

Saturated fatty acids have been found to increase 
requirement of EFA as measured by growth, dermal 
symptoms of deficiency, and triene:tetraene ratio in 
plasma.143 This action may be related to the effect of 
saturated fatty acids in raising plasma cholesterol that 
forms esters with PUFA and deplete the EFA pool 
available for phospholipids. Dietary EFA are effective 
in reducing plasma cholesterol levels .  144A45 

Monounsaturated fatty acids can replace EFA in 
the lipids of deficient animals and humans. As stated 
earlier, they also suppress the desaturation of EFA if 
present at high dietary levels. Most of the unsaturated 
fatty acids occuring naturally and present in our diets 
possess double bonds in the cis configuration. Partial 
hydrogenation of vegetable oils is done for production 
of margarines and shortenings. This process forms sat- 
urated fatty acids and a variety of trans and positional 
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isomers of unsaturated fatty acids in varying amounts. 
Stick margarine contains 25%-35%, tub margarine 
15%-25% and shortening 20%-30% of trans isomers. 
It has been estimated that the average daily trans fatty 
acid intake is 8-10 g or 6%-8% of the total dietary 
fatty acids. The trans monounsaturated acids have 
been found to increase the EFA requirement in ani- 
mals when included at moderate amounts in the diet. 146 
The position and geometry of unsaturation influence 
the inhibition of desaturase reactions critical to the 
metabolism of PUFA. The trans fatty acids also raise 
plasma levels of LDL and total cholesterol and HDL 
cholesterol. 147.148 

Effects of high doses of essential fatty acids 

Studies on EFA have been mainly concerned with the 
symptoms of deficiency and the minimal requirements 
to prevent or treat the deficiency state. Little is known 
about the adverse effects of high doses of these nutri- 
ents in the diet. Excess linoleic and linolenic acids and 
other fatty acids compete for the site on A 6 desaturase 
and will have an effect on the formation of long-chain 
PUFA derived from them. Dietary EFA can act as 
depressors of some enzymes such as fatty acid synthe- 
tase and glucose-6-phosphate dehydrogenase 149 but we 
do not know whether this action is beneficial or harm- 
ful. It has been suggested that a high intake of PUFA 
may be an environmental factor in some types of can- 
cer. Animal studies have shown that when fed with 
a carcinogen, PUFA are more co-carcinogenic than 
saturated fatty acids. 15° Some studies have been re- 
ported that show a proportionate increase in cancer 
rate as the amount of ingested PUFA increase. TM It 
has been established that as the intake of PUFA in- 
creases the antioxidant capacity of the body is chal- 
lenged. The oxidation of excess PUFA results in the 
formation of peroxidized free radicals that can damage 
and destroy cells, cellular components, and other 
body proteins. The end result is the formation of lipo- 
fuscin pigment granules that are polymers of peroxi- 
dized PUFA. Lipofuscin seems to be associated with 
the aging process because the amount of this pigment 
increases with age. 152 Vitamin E works as effective 
antioxidant and inhibits oxidation of PUFA. Vegetable 
oils generally are rich in this vitamin but PUFA in 
the body have a longer half-life than vitamin E and, 
therefore, the requirement of the vitamin is increased 
with excess intake of PUFA. 153 

EFA are the precursors of eicosanoids and each of 
the three 20-carbon fatty acids DHGL, arachidonic 
acid, and EPA give rise to different series of eicosa- 
noids, some with opposite effects. Thromboxane A 2 
derived from arachidonic acid causes aggregation of 
platelets, while prostacyclin 12 derived from the same 
precursor has a diametrically opposite effect. The ag- 
gregation of platelets seems to be beneficial at periph- 
eral wounds but may be harmful within the coronary 
or cerebral vessels. It is not known what effect the 
excess PUFA of the co 6 family will have on the forma- 
tion of different eicosanoids. Excess co 3 fatty acids 
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may have adverse effects from the suppression of 
thrombogenic activity. 

Several hazardous effects have been reported in 
newborn infants: a reduced clearance rate in small- 
for-date infants as well as premature infants born be- 
fore 32 weeks of gestation 154 and displacement of bili- 
rubin from albumin binding sites and increased risk of 
kernictirus in jaundiced newborns 155 are observed. 
The deposition of lipid material in macrophages that 
may alter immunity,  J56~57 immunosuppressive ef- 
fect, ~58 and altered pulmonary gas exchange ~59 have 
also been described. 

Conclusions 

Four families of PUFA occur in mammalian tissues. 
The precursors of the two are palmitoleic ((07) and 
oleic ((09) acids that can be synthesized endogenously 
from palmitic and stearic acids, respectively. The pre- 
cursors of the other two are linoleic ((06) and linolenic 
((03) acids (from plant sources) and are considered di- 
etarily essential for both humans and animals. The 
long-chain highly unsaturated PUFA are formed from 
these precursors by a process involving desaturation 
and chain elongation. The principal products of the (06 
family are arachidonic acid and DHGL and those of 
the (03 family are EPA and DHA. The major products 
derived from non-essential fatty acids (when the di- 
etary intake of linoleate and linolenate are inadequate) 
are eicosatrienoic acids ((or and (09). 

The long-chain PUFA derived from EFA are pri- 
marily esterified in the carbon-2 position of bilayer 
phospholipids of mammalian plasma, nuclear, and mi- 
tochondrial membranes. These PUFA, when incor- 
porated into membrane phospholipids, can alter the 
physicochemical characteristics (microviscosity and 
fluidity) of the membrane lipid matrix which, in turn, 
can influence the conformation, mobility, and function 
of a variety of membrane-bound proteins. Linoleic 
acid is specifically required in the skin to maintain the 
integrity of epidermal water barrier and the 20-carbon 
fatty acids (DHGL, arachidonic acid, and EPA) when 
released from their phospholipids can also be trans- 
formed into eicosanoids that influence many cell pro- 
cesses and organ functions. Other than these roles the 
specific functions of individual PUFA are not clearly 
understood. 

Mammals have an absolute requirement for the (06 
family of fatty acids. If deprived of these nutrients a 
state of deficiency is induced. Features include derma- 
titis with increased transepidermal water loss, repro- 
ductive inefficiency, susceptibility to infection, and 
depressed inflammatory response. Biochemically, 
EFA deficiency is characterized by a decrease in tis- 
sue (06 fatty acids including arachidonic acid and the 
accumulation of 0) 9 fatty acids, specifically eicosatri- 
enoic acid (Mead acid), leading to the increase in the 
plasma triene:tetraene ratio above 0.4. 

The role of the (03 family of fatty acids is less clear. 
Amounts of (03 fatty acids in mammalian tissues are 
generally much lower than (06 fatty acids and it has 

been difficult to demonstrate its essentiality in animal 
studies. It is generally considered that linoleic acid 
satisfies most of the EFA requirements and any EFA 
activity attributed to linolenic acid is also expressed 
by linoleic acid that is equal or more active. But the 
consistent presence of large amounts of (03 fatty acids, 
especially DHA, in such tissues as retina and brain, 
and the extreme stability of the composition of PUFA 
in the brain, even in the face of wide variation in the 
diet, suggest a specific role for (03 in nervous system 
and retinal function. The recent reports on the neuro- 
logic symptoms in an infant associated with parentally 
fed linolenic acid-poor formula and the deficiency 
symptoms in adults that were corrected by linolenic 
acid supports the essentiality of this fatty acid in the 
diet. The requirement may be more critical during de- 
velopmental stage because of the presence of DHA in 
the brain. More studies are required to understand the 
biochemical mechanisms underlying the essentiality of 
individual long-chain EFA-derived PUFA and the 
amounts needed to meet the minimal requirements in 
humans. 
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